Home | deutsch  | Legals | Data Protection | Sitemap | KIT
Lukas Barth

M.Sc. Lukas Barth

Researcher
Office Hours: Donnerstag 14:00 - 15:00 und nach Vereinbarung
Room: 306
Phone: +49 721 608-47329
Fax: +49 721 608-44211
lukas barthGof0∂kit edu


Institut für Theoretische Informatik (ITI)
Lehrstuhl für Algorithmik I, Prof. Dr. Dorothea Wagner

Karlsruher Institut für Technologie
Am Fasanengarten 5,
Gebäude 50.34, Raum 306
76131 Karlsruhe

 

PGP-Key: 0x5238105F
Fingerprint: 7AAC 0D70 5552 F6BB 5C5C 086B 008C 860C 5238 105F

 



Research Abstract

I look into the idea of Demand Response / Demand Side Management in smart grids: in future (smart) energy grids, we will be faced with a rising share of non-dispatchable, i.e., non-controllable, generation. However, for the grid to be stable, supply must match demand; currently, this can by achieved by dispatching the generation accordingly; in the future, we will have to come up with different strategies.

One such strategy is to control parts of the demand side instead of the generation side: In industry and households, there are a variety of electrical demands which do not necessarily need to run at a specific time, but rather within a specific time frame. Aside from challenges regarding e.g. communications and control infrastructure, privacy issues or tariffing, for this approach to be successful we need algorithms able to schedule a huge amount of electrical demands. Finding such algorithms is what I am interested in.

The algorithms do not only have to be efficient, but must also be able to cope with a complex model to be relevant for realistic scenarios: Interdependencies between demands, interruptible and non-interruptible demands, machinery that can operate in several different modes with different demands etc. should all be encompassed by the model. At the same time, the use case for the algorithm might dictate very strict runtime constraints: If an algorithms is to be used to optimize for example trading energy on a spot market, near-instantaneous optimization is necessary. To achieve all this, I adapt results from the areas of machine scheduling as well as project scheduling.

Publications


18: Algorithmen I, Vorlesung und Übung, SS 2016, am 22.06.2016.
Hofheinz. Dennis; Barth, L.; KIT | Webcast [Hrsg.].
2016. doi:10.5445/DIVA/2016-496
13: Algorithmen I, Vorlesung und Übung, SS 2016, am 01.06.2016.
Hofheinz. Dennis; Barth, L.; KIT | Webcast [Hrsg.].
2016. doi:10.5445/DIVA/2016-419
09: Algorithmen I, Vorlesung und Übung, SS 2016, am 18.05.2016.
Hofheinz. Dennis; Barth, L.; KIT | Webcast [Hrsg.].
2016. doi:10.5445/DIVA/2016-388
06: Algorithmen I, Vorlesung und Übung, SS 2016, am 04.05.2016.
Hofheinz. Dennis; Barth, L.; KIT | Webcast [Hrsg.].
2016. doi:10.5445/DIVA/2016-321
02: Algorithmen I, Vorlesung und Übung, SS 2016, am 20.04.2016.
Hofheinz. Dennis; Barth, L.; KIT | Webcast [Hrsg.].
2016. doi:10.5445/DIVA/2016-295
Multilevel Planarity.
Barth, L.; Brückner, G.; Jungeblut, P.; Radermacher, M.
2019. WALCOM: Algorithms and Computation : 13th International Conference, WALCOM 2019, Guwahati, India, February 27 – March 2, 2019, Proceedings. Ed.: G. Das, 219–231, Springer International Publishing, Cham. doi:10.1007/978-3-030-10564-8_18
On the readability of leaders in boundary labeling.
Barth, L.; Gemsa, A.; Niedermann, B.; Nöllenburg, M.
2019. Information visualization, 18 (1), 110–132. doi:10.1177/1473871618799500
Shaving peaks by augmenting the dependency graph.
Barth, L.; Wagner, D.
2019. Proceedings of the Tenth ACM International Conference on Future Energy Systems - e-Energy ’19, Phoenix, AZ, USA, June 25 - 28, 2019, 181–191, ACM, New York (NY). doi:10.1145/3307772.3328298
Industrial demand-side flexibility: A benchmark data set.
Ludwig, N.; Barth, L.; Wagner, D.; Hagenmeyer, V.
2019. Proceedings of the Tenth ACM International Conference on Future Energy Systems - e-Energy ’19, Phoenix, AZ, USA, June 25 - 28, 2019, 460–473, ACM, New York (NY). doi:10.1145/3307772.3331021
How much demand side flexibility do we need? - Analyzing where to exploit flexibility in industrial processes.
Barth, L.; Hagenmeyer, V.; Ludwig, N.; Wagner, D.
2018. 9th ACM International Conference on Future Energy Systems (ACM e-Energy), 12th - 15th June 2018, Karlsruhe, Germany, 43–62, ACM, New York. doi:10.1145/3208903.3208909
Towards a topology-shape-metrics framework for ortho-radial drawings.
Barth, L.; Niedermann, B.; Rutter, I.; Wolf, M.
2017. 33rd International Symposium on Computational Geometry, Brisbane, Australia, 4th - 7th July 2017, 141–1416, Dagstuhl Publishing, Wadern. doi:10.4230/LIPIcs.SoCG.2017.14
Exploiting Flexibility in Smart Grids at Scale : The Resource Utilization Scheduling Heuristic.
Barth, L.; Wagner, D.
2017. Computer science - research and development, 33 (1-2), 185–191. doi:10.1007/s00450-017-0357-4
A comprehensive modelling framework for demand side flexibility in smart grids.
Barth, L.; Ludwig, N.; Mengelkamp, E.; Staudt, P.
2018. Computer science - research and development, 33 (1-2), 13–23. doi:10.1007/s00450-017-0343-x
Temporal map labeling: A new unified framework with experiments.
Barth, L.; Niedermann, B.; Nöllenburg, M.; Strash, D.
2016. GIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems, San Francisco, CA, October 31 - November 3, 2016. Ed.: M. Renz, Article 23, ACM, NY. doi:10.1145/2996913.2996957
Semantic Word Cloud Representations: Hardness and Approximation Algorithms.
Barth, L.; Fabrikant, S. I.; Kobourov, S. G.; Lubiw, A.; Nöllenburg, M.; Okamato, Y.; Pupyrev, S.; Squarcella, C.; Ueckerdt, T.; Wolff, A.
2014. LATIN 2014: Theoretical Informatics - 11th Latin American Symposium, Montevideo, Uruguay, March 31 - April 4, 2014. Ed.: A. Pardo, 514–525, Springer, Berlin. doi:10.1007/978-3-642-54423-1_45